Distributionally Robust Disaster Relief Planning under the Wasserstein Set

We study a two-stage natural disaster management problem modeled as a stochastic program, where the first stage consists of a facility location problem, deciding where to open facilities and pre-allocate resources such as medical and food kits, and the second stage is a fixed-charge transportation problem, routing resources to affected areas after observing a disaster. … Read more

Distributionally Robust Facility Location with Bimodal Random Demand

In this paper, we consider a decision-maker who wants to determine a subset of locations from a given set of candidate sites to open facilities and accordingly assign customer demand to these open facilities. Unlike classical facility location settings, we focus on a new setting where customer demand is bimodal, i.e., display, or belong to, … Read more

Approximate Submodularity and Its Implications in Discrete Optimization

Submodularity, a discrete analog of convexity, is a key property in discrete optimization that features in the construction of valid inequalities and analysis of the greedy algorithm. In this paper, we broaden the approximate submodularity literature, which so far has largely focused on variants of greedy algorithms and iterative approaches. We define metrics that quantify … Read more

Some heuristic methods for the p-median problem with maximum distance constraints. Application to a bi-objective problem.

In this work we study the p-median problem with maximum distance constraints (PMPDC) which is a variant of the classical p-median problem (PMP). First of all, we provide some different formulations for (PMPDC) because the heuristics procedures for the (PMPDC) with a formulation based on the approach that modifies the distance matrix that leads to … Read more

Evaluating on-demand warehousing via dynamic facility location models

On-demand warehousing platforms match companies with underutilized warehouse and distribution capabilities with customers who need extra space or distribution services. These new business models have unique advantages, in terms of reduced capacity and commitment granularity, but also have different cost structures compared to traditional ways of obtaining distribution capabilities. This research is the first quantitative … Read more

Anomalous Behaviour of Dual-Based Heuristics

Some popular heuristics for combinatorial optimisation start by constructing a feasible solution to a dual of the problem. We show that such dual-based heuristics can exhibit highly counter-intuitive behaviour. In particular, for some problem classes, solving the dual exactly invariably leads to much worse primal solutions than solving the dual with a simple greedy heuristic. … Read more

The Value of Flexibility in Robust Location-Transportation Problems

This article studies a multi-period capacitated fixed-charge location-transportation problem in which, while the location and capacity of each facility need to be determined immediately, the determination of final production and distribution of products can be delayed until actual orders are received in each period. In contexts where little is known about future demand, robust optimization, … Read more

A several new mixed integer linear programming formulations for exploration of online social networks

The goal of this paper is to identify the most promising sets of closest assignment constraints from the literature, in order to improve mixed integer linear programming formulations for exploration of information flow within a social network. The direct comparison between proposed formulations is performed on standard single source capacitated facility location problem instances. Therefore, … Read more

Public Facility Location Using Dispersion, Population, and Equity Criteria

Administrators/Decision Makers (DMs) responsible for making locational decisions for public facilities have many other overriding factors to consider that dominate traditional OR/MS objectives that relate to response time. We propose that an appropriate role for the OR/MS analyst is to help the DMs identify a good set of solutions rather than an optimal solution that … Read more

Scenario Trees – A Process Distance Approach

The approximation of stochastic processes by trees is an important topic in multistage stochastic programming. In this paper we focus on improving the approximation of large trees by smaller (tractable) trees. The quality of the approximation is measured by the nested distance, recently introduced in [Pflug]. The nested distance is derived from the Wasserstein distance. … Read more