Modeling Hessian-vector products in nonlinear optimization: New Hessian-free methods

In this paper, we suggest two ways of calculating interpolation models for unconstrained smooth nonlinear optimization when Hessian-vector products are available. The main idea is to interpolate the objective function using a quadratic on a set of points around the current one and concurrently using the curvature information from products of the Hessian times appropriate … Read more

Bilevel Derivative-Free Optimization and its Application to Robust Optimization

We address bilevel programming problems when the derivatives of both the upper and the lower level objective functions are unavailable. The core algorithms used for both levels are trust-region interpolation-based methods, using minimum Frobenius norm quadratic models when the number of points is smaller than the number of basis components. We take advantage of the … Read more