Direct search based on probabilistic descent

Direct-search methods are a class of popular derivative-free algorithms characterized by evaluating the objective function using a step size and a number of (polling) directions. When applied to the minimization of smooth functions, the polling directions are typically taken from positive spanning sets which in turn must have at least n+1 vectors in an n-dimensional … Read more

A merit function approach for direct search

In this paper it is proposed to equip direct-search methods with a general procedure to minimize an objective function, possibly non-smooth, without using derivatives and subject to constraints on the variables. One aims at considering constraints, most likely nonlinear or non-smooth, for which the derivatives of the corresponding functions are also unavailable. The novelty of … Read more