A Combined Class of Self-Scaling and Modified Quasi-Newton Methods

Techniques for obtaining safely positive definite Hessian approximations with self-scaling and modified quasi-Newton updates are combined to obtain `better’ curvature approximations in line search methods for unconstrained optimization. It is shown that this class of methods, like the BFGS method has global and superlinear convergence for convex functions. Numerical experiments with this class, using the … Read more