A Branch-and-Price-and-Cut Algorithm for Discrete Network Design Problems Under Traffic Equilibrium

This study addresses discrete network design problems under traffic equilibrium conditions or DNDPs. Given a network and a budget, DNDPs aim to model all-or-nothing decisions such as link addition to minimize network congestion effects. Congestion is measured using traffic equilibrium theory where link travel times are modeled as convex flow-dependent functions and where users make … Read more

The Price of Atomic Selfish Ring Routing

We study selfish routing in ring networks with respect to minimizing the maximum latency. Our main result is an establishement of constant bounds on the price of stability (PoS) for routing unsplittable flows with linear latency. We show that the PoS is at most 6.83, which reduces to 4:57 when the linear latency functions are … Read more

Efficiency and Fairness of System-Optimal Routing with User Constraints

We study the route-guidance system proposed by Jahn, Möhring, Schulz and Stier-Moses (2004) from a theoretical perspective. This approach computes a traffic pattern that minimizes the total travel time subject to user constraints, which ensure that routes suggested to users are not much longer than shortest paths. We show that when distances are measured with … Read more