A First-Order Framework for Inverse Imaging Problems
We argue that some inverse problems arising in imaging can be efficiently treated using only single-precision (or other reduced-precision) arithmetic, using a combination of old ideas (first-order methods, polynomial preconditioners), and new ones (bilateral filtering, total variation). Using single precision, and having structures which parallelize in the ways needed to take advantage of low-cost/high-performance multi-core/SIMD … Read more