Skip to content

Optimization Online

  • Welcome
  • Repository
  • Submit
  • About
  • Help
  • My Eprints

spectral gradient methods

SLiSeS: Subsampled Line Search Spectral Gradient Method for Finite Sums

Published: 2023/06/01, Updated: 2024/10/09
  • Stefania Bellavia
  • Nataša Krejić
  • Nataša Krklec Jerinkić
  • Marcos Raydan
  • Categories Data Science Algorithms, Nonlinear Optimization, Optimization in Data Science Tags finite sum minimization, line-search, spectral gradient methods, subsampling

    CitationSLiSesArticleDownload View PDF

    Log in


    Repository

    Author List

    Months

    Categories

    Keywords

    alternating direction method of multipliers approximation algorithms augmented lagrangian method bilevel optimization Branch-and-Bound branch-and-cut chance constraints column generation combinatorial optimization complexity conic optimization convex optimization cutting planes decomposition derivative-free optimization distributionally robust optimization duality dynamic programming first-order methods global convergence global optimization heuristics integer programming interior point methods large-scale optimization linear programming machine learning mixed-integer linear programming mixed-integer nonlinear programming mixed-integer programming multiobjective optimization nonconvex optimization nonlinear optimization nonlinear programming nonsmooth optimization optimal control optimization proximal point algorithm quadratic programming robust optimization semidefinite programming stochastic optimization stochastic programming trust-region methods unconstrained optimization

    © 2025 Optimization Online • Child Theme of GeneratePress
    For feedback or questions, contact optonline@wid.wisc.edu.