SLiSeS: Subsampled Line Search Spectral Gradient Method for Finite Sums
Citation SLiSes Article Download View SLiSeS: Subsampled Line Search Spectral Gradient Method for Finite Sums
Citation SLiSes Article Download View SLiSeS: Subsampled Line Search Spectral Gradient Method for Finite Sums
The recently developed delayed weighted gradient method (DWGM) is competitive with the well-known conjugate gradient (CG) method for the minimization of strictly convex quadratic functions. As well as the CG method, DWGM has some key optimality and orthogonality properties that justify its practical performance. The main difference with the CG method is that, instead of … Read more
We present a derivative-free separable quadratic modeling and cubic regularization technique for solving smooth unconstrained minimization problems. The derivative-free approach is mainly concerned with building a quadratic model that could be generated by numerical interpolation or using a minimum Frobenious norm approach, when the number of points available does not allow to build a complete … Read more
We introduce a family of weighted conjugate-gradient-type methods, for strictly convex quadratic functions, whose parameters are determined by a minimization model based on a convex combination of the objective function and its gradient norm. This family includes the classical linear conjugate gradient method and the recently published delayed weighted gradient method as the extreme cases … Read more
Derivatives are an important tool for single-objective optimization. In fact, it is commonly accepted that derivative-based methods present a better performance than derivative-free optimization approaches. In this work, we will show that the same does not apply to multiobjective derivative-based optimization, when the goal is to compute an approximation to the complete Pareto front of … Read more
The delayed weighted gradient method, recently introduced in [13], is a low-cost gradient-type method that exhibits a surprisingly and perhaps unexpected fast convergence behavior that competes favorably with the well-known conjugate gradient method for the minimization of convex quadratic functions. In this work, we establish several orthogonality properties that add understanding to the practical behavior … Read more