An Explicit Spectral Fletcher-Reeves Conjugate Gradient Method for Bi-criteria Optimization

In this paper we propose a spectral Fletcher-Reeves conjugate gradient-like method (SFRCG) for solving unconstrained bi-criteria minimisation problems without using any technique of scalarization. We suggest an explicit formulae for computing a descent direction common to both criteria. This latter verifies furthermore a sufficient descent property which does not depend on the line search nor … Read more

Spectral Projected Subgradient Method for Nonsmooth Convex Optimization Problems

We consider constrained optimization problems with a nonsmooth objective function in the form of mathematical expectation. The Sample Average Approximation (SAA) is used to estimate the objective function and variable sample size strategy is employed. The proposed algorithm combines an SAA subgradient with the spectral coefficient in order to provide a suitable direction which improves … Read more

LSOS: Line-search Second-Order Stochastic optimization methods for nonconvex finite sums

We develop a line-search second-order algorithmic framework for minimizing finite sums. We do not make any convexity assumptions, but require the terms of the sum to be continuously differentiable and have Lipschitz-continuous gradients. The methods fitting into this framework combine line searches and suitably decaying step lengths. A key issue is a two-step sampling at … Read more

A Proximal Interior Point Algorithm with Applications to Image Processing

In this article, we introduce a new proximal interior point algorithm (PIPA). This algorithm is able to handle convex optimization problems involving various constraints where the objective function is the sum of a Lipschitz differentiable term and a possibly nonsmooth one. Each iteration of PIPA involves the minimization of a merit function evaluated for decaying … Read more

Line search and convergence in bound-constrained optimization

The first part of this paper discusses convergence properties of a new line search method for the optimization of continuously differentiable functions with Lipschitz continuous gradient. The line search uses (apart from the gradient at the current best point) function values only. After deriving properties of the new, in general curved, line search, global convergence … Read more

Efficient global unconstrained black box optimization

For the unconstrained optimization of black box functions, this paper introduces a new randomized algorithm called VRBBO. In practice, VRBBO matches the quality of other state-of-the-art algorithms for finding, in small and large dimensions, a local minimizer with reasonable accuracy. Although our theory guarantees only local minimizers our heuristic techniques turn VRBBO into an efficient … Read more

A lower bound on the iterative complexity of the Harker and Pang globalization technique of the Newton-min algorithm for solving the linear complementarity problem

The plain Newton-min algorithm for solving the linear complementarity problem (LCP) 0 ≤ x ⊥ (Mx+q) ≥ 0 can be viewed as an instance of the plain semismooth Newton method on the equational version min(x,Mx+q) = 0 of the problem. This algorithm converges for any q when M is an M-matrix, but not when it … Read more

Complexity analysis of second-order line-search algorithms for smooth nonconvex optimization

There has been much recent interest in finding unconstrained local minima of smooth functions, due in part of the prevalence of such problems in machine learning and robust statistics. A particular focus is algorithms with good complexity guarantees. Second-order Newton-type methods that make use of regularization and trust regions have been analyzed from such a … Read more

A Parallel Line Search Subspace Correction Method for Composite Convex Optimization

In this paper, we investigate a parallel subspace correction framework for composite convex optimization. The variables are first divided into a few blocks based on certain rules. At each iteration, the algorithms solve a suitable subproblem on each block simultaneously, construct a search direction by combining their solutions on all blocks, then identify a new … Read more

Boosting the Feasibility Pump

The Feasibility Pump (FP) has proved to be an effective method for finding feasible solutions to mixed integer programming problems. FP iterates between a rounding procedure and a projection procedure, which together provide a sequence of points alternating between LP feasible but fractional solutions, and integer but LP relaxed infeasible solutions. The process attempts to … Read more