Fast Stochastic Second-Order Adagrad for Nonconvex Bound-Constrained Optimization
ADAGB2, a generalization of the Adagrad algorithm for stochastic optimization is introduced, which is also applicable to bound-constrained problems and capable of using second-order information when available. It is shown that, givenĀ delta in (0,1) and epsilon in (0,1], the ADAGB2 algorithm needs at most O(epsilon^{-2}) iterations to ensure an epsilon-approximate first-order critical point of … Read more