A variable dimension sketching strategy for nonlinear least-squares

We present a stochastic inexact Gauss-Newton method for the solution of nonlinear least-squares. To reduce the computational cost with respect to the classical method, at each iteration the proposed algorithm approximately minimizes the local model on a random subspace. The dimension of the subspace varies along the iterations, and two strategies are considered for its … Read more

Fast Stochastic Second-Order Adagrad for Nonconvex Bound-Constrained Optimization

ADAGB2, a generalization of the Adagrad algorithm for stochastic optimization is introduced, which is also applicable to bound-constrained problems and capable of using second-order information when available. It is shown that, given  delta in (0,1) and epsilon in (0,1], the ADAGB2 algorithm needs at most O(epsilon^{-2}) iterations to ensure an epsilon-approximate first-order critical point of … Read more

Inexact Newton methods with matrix approximation by sampling for nonlinear least-squares and systems

We develop and analyze stochastic inexact Gauss-Newton methods for nonlinear least-squares problems and inexact Newton methods for nonlinear systems of equations. Random models are formed using suitable sampling strategies for the matrices involved in the deterministic models. The analysis of the expected number of iterations needed in the worst case to achieve a desired level … Read more

Trust-region algorithms: probabilistic complexity and intrinsic noise with applications to subsampling techniques

A trust-region algorithm is presented for finding approximate minimizers of smooth unconstrained functions whose values and derivatives are subject to random noise. It is shown that, under suitable probabilistic assumptions, the new method finds (in expectation) an epsilon-approximate minimizer of arbitrary order q > 0 in at most O(epsilon^{-(q+1)}) inexact evaluations of the function and … Read more

A stochastic first-order trust-region method with inexact restoration for finite-sum minimization

We propose a stochastic first-order trust-region method with inexact function and gradient evaluations for solving finite-sum minimization problems. At each iteration, the function and the gradient are approximated by sampling. The sample size in gradient approximations is smaller than the sample size in function approximations and the latter is determined using a deterministic rule inspired … Read more

The Impact of Noise on Evaluation Complexity: The Deterministic Trust-Region Case

Intrinsic noise in objective function and derivatives evaluations may cause premature termination of optimization algorithms. Evaluation complexity bounds taking this situation into account are presented in the framework of a deterministic trust-region method. The results show that the presence of intrinsic noise may dominate these bounds, in contrast with what is known for methods in … Read more

Solving nonlinear systems of equations via spectral residual methods: stepsize selection and applications

Spectral residual methods are derivative-free and low-cost per iteration procedures for solving nonlinear systems of equations. They are generally coupled with a nonmonotone linesearch strategy and compare well with Newton-based methods for large nonlinear systems and sequences of nonlinear systems. The residual vector is used as the search direction and choosing the steplength has a … Read more

High-order Evaluation Complexity of a Stochastic Adaptive Regularization Algorithm for Nonconvex Optimization Using Inexact Function Evaluations and Randomly Perturbed Derivatives

A stochastic adaptive regularization algorithm allowing random noise in derivatives and inexact function values is proposed for computing strong approximate minimizers of any order for inexpensively constrained smooth optimization problems. For an objective function with Lipschitz continuous p-th derivative in a convex neighbourhood of the feasible set and given an arbitrary optimality order q, it … Read more

Adaptive cubic regularization methods with dynamic inexact Hessian information and applications to finite-sum minimization

Abstract. We consider the Adaptive Regularization with Cubics approach for solving nonconvex optimization problems and propose a new variant based on inexact Hessian information chosen dynamically. The theoretical analysis of the proposed procedure is given. The key property of ARC framework, constituted by optimal worst-case function/derivative evaluation bounds for first- and second-order critical point, is … Read more