Superlinear convergence of an interior point algorithm on linear semi-definite feasibility problems with application to linear matrix inequalities

In the literature, superlinear convergence of implementable polynomial-time interior point algorithms using known search directions, namely, the HKM direction, its dual and the NT direction, to solve semi-definite programs (SDPs) can be shown by (i) assuming that the given SDP is nondegenerate and modifying these algorithms [10], or (ii) considering special classes of SDPs, such … Read more

Local Analysis of the Feasible Primal-Dual Interior-Point Method

In this paper we analyze the rate of local convergence of the Newton primal-dual interior-point method when the iterates are kept strictly feasible with respect to the inequality constraints. It is shown under the classical conditions that the rate is q-quadratic when the functions associated to the inequality constraints define a locally concave feasible region. … Read more