Local minimizers of semi-algebraic functions

Consider a semi-algebraic function $f\colon\mathbb{R}^n \to {\mathbb{R}},$ which is continuous around a point $\bar{x} \in \mathbb{R}^n.$ Using the so–called {\em tangency variety} of $f$ at $\bar{x},$ we first provide necessary and sufficient conditions for $\bar{x}$ to be a local minimizer of $f,$ and then in the case where $\bar{x}$ is an isolated local minimizer of … Read more

Quadratic growth and critical point stability of semi-algebraic functions

We show that quadratic growth of a semi-algebraic function is equivalent to strong metric subregularity of the subdifferential — a kind of stability of generalized critical points. In contrast, this equivalence can easily fail outside of the semi-algebraic setting. Citation13 pages, September, 2013ArticleDownload View PDF

GENERALIZATIONS OF THE DENNIS-MOR\’E THEOREM II

This paper is a continuation of our previous paper were we presented generalizations of the Dennis-Mor\’e theorem to characterize q-superliner convergences of quasi-Newton methods for solving equations and variational inequalities in Banach spaces. Here we prove Dennis-Mor\’e type theorems for inexact quasi-Newton methods applied to variational inequalities in finite dimensions. We first consider variational inequalities … Read more