AI Hilbert: A New Paradigm for Scientific Discovery by Unifying Data and Background Knowledge

The discovery of scientific formulae that parsimoniously explain natural phenomena and align with existing background theory is a key goal in science. Historically, scientists have derived natural laws by manipulating equations based on existing¬†knowledge, forming new equations, and verifying them experimentally. In recent years, data-driven scientific discovery has emerged as a viable competitor in settings¬†with … Read more

Learning Symbolic Expressions: Mixed-Integer Formulations, Cuts, and Heuristics

In this paper we consider the problem of learning a regression function without assuming its functional form. This problem is referred to as symbolic regression. An expression tree is typically used to represent a solution function, which is determined by assigning operators and operands to the nodes. The symbolic regression problem can be formulated as … Read more