Convergence Analysis of Primal-Dual Based Methods for Total Variation Minimization with Finite Element Approximation

We consider the total variation minimization model with consistent finite element discretization. It has been shown in the literature that this model can be reformulated as a saddle-point problem and be efficiently solved by the primal-dual method. The convergence for this application of the primal-dual method has also been analyzed. In this paper, we focus … Read more

NESTA: A Fast and Accurate First-order Method for Sparse Recovery

Accurate signal recovery or image reconstruction from indirect and possibly under- sampled data is a topic of considerable interest; for example, the literature in the recent field of compressed sensing is already quite immense. Inspired by recent breakthroughs in the development of novel fi rst-order methods in convex optimization, most notably Nesterov’s smoothing technique, this paper … Read more