BFO, a trainable derivative-free Brute Force Optimizer for nonlinear bound-constrained optimization and equilibrium computations with continuous and discrete variables
A direct-search derivative-free Matlab optimizer for bound-constrained problems is described, whose remarkable features are its ability to handle a mix of continuous and discrete variables, a versatile interface as well as a novel self-training option. Its performance compares favourably with that of NOMAD, a state-of-the art package. It is also applicable to multilevel equilibrium- or … Read more