Polynomial-Time Algorithms for Setting Tight Big-M Coefficients in Transmission Expansion Planning with Disconnected Buses

The increasing penetration of renewable energy into power systems necessitates the development of effective methodologies to integrate initially disconnected generation sources into the grid. This paper introduces the Longest Shortest-Path-Connection (LSPC) algorithm, a graph-based method to enhance the mixed-integer linear programming disjunctive formulation of Transmission Expansion Planning (TEP) using valid inequalities (VIs). Traditional approaches for … Read more

Transmission Expansion Planning Using an AC Model: Formulations and Possible Relaxations

Transmission expansion planning (TEP) is a rather complicated process which requires extensive studies to determine when, where and how many transmission facilities are needed. A well planned power system will not only enhance the system reliability, but also tend to contribute positively to the overall system operating efficiency. Starting with two mixed-integer nonlinear programming (MINLP) … Read more