Resilient Relay Logistics Network Design: A k-Shortest Path Approach

Problem definition: We study the problem of designing large-scale resilient relay logistics hub networks. We propose a model of k-Shortest Path Network Design, which aims to improve a network’s efficiency and resilience through its topological configuration, by locating relay logistics hubs to connect each origin-destination pair with k paths of minimum lengths, weighted by their … Read more

Improvements for Decomposition Based Methods Utilized in the Development of Multi-Scale Energy Systems

The optimal design of large-scale energy systems can be found by posing the problem as an integrated multi-period planning and scheduling mathematical programming problem. Due to the complexity of the accompanying mathematical programming problem decomposition techniques are often required but they to are plagued with converge issues. To address these issues we have derived a … Read more

A combined model for chain expansion including the possibility of locating a new facility and modification and/or closing of existing facilities

The problem of an expanding chain (it already has some facilities) in a given area is considered. It may locate a new facility, or vary (up or down) the quality of its existing facilities, or close some of them, or a combination of all those possibilities, whatever it is the best to maximize its profit, … Read more

Benders-type Branch-and-Cut Algorithms for Capacitated Facility Location with Single-Sourcing

We consider the capacitated facility location problem with (partial) single-sourcing (CFLP-SS). A natural mixed integer formulation for the problem involves 0-1 variables x_j indicating whether faclility j is used or not and y_{ij} variables indicating the fraction of the demand of client i that is satisfied from facility j. When the x variables are fixed, … Read more

Continuous Covering on Networks: Strong Mixed Integer Programming Formulations

Covering problems are well-studied in the domain of Operations Research, and, more specifically, in Location Science. When the location space is a network, the most frequent assumption is to consider the candidate facility locations, the points to be covered, or both, to be discrete sets. In this work, we study the set-covering location problem when … Read more

Time-series aggregation for the optimization of energy systems: goals, challenges, approaches, and opportunities

The rising significance of renewable energy increases the importance of representing time-varying input data in energy system optimization studies. Time-series aggregation, which reduces temporal model complexity, has emerged in recent years to address this challenge. We provide a comprehensive review of time-series aggregation for the optimization of energy systems. We show where time series affect … Read more

Determining locations and layouts for parcel lockers to support supply chain viability at the last mile

The pandemic caused by the corona virus SARS-CoV-2 raised many new challenges for humanity. For instance, governments imposed regulations such as lockdowns, resulting in supply chain shocks at different tiers. Additionally, delivery services reached their capacity limits because the demand for mail orders soared temporarily during the lockdowns. We argue that one option to support … Read more

Designing reliable future energy systems by iteratively including extreme periods in time-series aggregation

Generation Capacity Expansion Planning (GCEP) requires high temporal resolution to account for the volatility of renewable energy supply. Because the GCEP optimization problem is often computationally intractable, time-series input data are often aggregated to representative periods using clustering. However, clustering removes extreme events, which are important to achieve reliable system designs. We present a method … Read more

Retail Store Layout Optimization for Maximum Product Visibility

It is well-established that increased product visibility to shoppers leads to higher sales for retailers. In this study, we propose an optimization methodology which assigns product categories and subcategories to store locations and sublocations to maximize the overall visibility of products to shoppers. The methodology is hierarchically developed to meet strategic and tactical layout planning … Read more

Sequential Competitive Facility Location: Exact and Approximate Algorithms

We study a competitive facility location problem (CFLP), where two firms sequentially open new facilities within their budgets, in order to maximize their market shares of demand that follows a probabilistic choice model. This process is a Stackelberg game and admits a bilevel mixed-integer nonlinear program (MINLP) formulation. We derive an equivalent, single-level MINLP reformulation … Read more