Generalized polarity and weakest constraint qualifications in multiobjective optimization

In G. Haeser, A. Ramos, Constraint Qualifications for Karush-Kuhn-Tucker Conditions in Multiobjective Optimization, JOTA, Vol.~187 (2020), 469-487, a generalization of the normal cone from single objective to multiobjective optimization is introduced, along with a weakest constraint qualification such that any local weak Pareto optimal point is a weak Kuhn-Tucker point. We extend this approach to … Read more

On the weakest constraint qualification for strong local minimizers

The strong local minimality of feasible points of nonlinear optimization problems is known to possess a characterization by a strengthened version of the Karush-Kuhn-Tucker conditions, as long as the Mangasarian-Fromovitz constraint qualification holds. This strengthened condition is not easy to check algorithmically since it involves the topological interior of some set. In this paper we … Read more