A so-called Standard Bi-Quadratic Optimization Problem (StBQP) consists in minimizing a bi-quadratic form over the Cartesian product of two simplices (so this is different from a Bi-Standard QP where a quadratic function is minimized over the same set). An application example arises in portfolio selection. In this paper we present a bi-quartic formulation of StBQP, in order to get rid of the sign constraints. We study the first and second-order optimality conditions of the original StBQP and the reformulated bi-quartic problem over the product of two Euclidean spheres. Furthermore, we discuss the one-to-one correspondence between the global/local solutions of StBQP and the global/local solutions of the reformulation. We introduce a continuously differentiable penalty function. Based upon this, the original problem is converted into the problem of locating an unconstrained global minimizer of a (specially structured) polynomial of degree eight.
Citation
Technical Report TR-ISDS 2009-03, Department of Statistics and Decision Support Systems, University of Vienna, Austria (August 2009)
Article
View Standard Bi-Quadratic Optimization Problems and Unconstrained Polynomial Reformulations