On approximate KKT condition and its extension to continuous variational inequalities

In this work we introduce a necessary natural sequential Approximate-Karush-Kuhn-Tucker (AKKT) condition for a point to be a solution of a continuous variational inequality problem without constraint quali cations, and we prove its relation with the Approximate Gradient Projection condition (AGP) of Garciga-Otero and Svaiter. We also prove that a slight variation of the AKKT condition … Read more

Paths, Trees and Matchings under Disjunctive Constraints

We study the minimum spanning tree problem, the maximum matching problem and the shortest path problem subject to binary disjunctive constraints: A negative disjunctive constraint states that a certain pair of edges cannot be contained simultaneously in a feasible solution. It is convenient to represent these negative disjunctive constraints in terms of a so-called conflict … Read more

A Simpler Approach to Matrix Completion

This paper provides the best bounds to date on the number of randomly sampled entries required to reconstruct an unknown low rank matrix. These results improve on prior work by Candes and Recht, Candes and Tao, and Keshavan, Montanari, and Oh. The reconstruction is accomplished by minimizing the nuclear norm, or sum of the singular … Read more

A Unifying Polyhedral Approximation Framework for Convex Optimization

We propose a unifying framework for polyhedral approximation in convex optimization. It subsumes classical methods, such as cutting plane and simplicial decomposition, but also includes new methods, and new versions/extensions of old methods, such as a simplicial decomposition method for nondifferentiable optimization, and a new piecewise linear approximation method for convex single commodity network flow … Read more