A 4-steps elementary proof of existence of Lagrange multipliers
We present a simplified proof of Lagrange’s theorem using only elementary properties of sets and sequences. ArticleDownload View PDF
We present a simplified proof of Lagrange’s theorem using only elementary properties of sets and sequences. ArticleDownload View PDF
This work investigates global convergence properties of a safeguarded augmented Lagrangian method applied to nonlinear programming problems, with an emphasis on the role of constraint qualifications in ensuring boundedness of the Lagrange multiplier estimates, also known as dual sequences. When functions with locally Lipschitz continuous derivatives define the constraint set, we prove that the Error … Read more
This paper deals with the Constrained Riemannian Optimization (CRO) problem, which involves minimizing a function subject to equality and inequality constraints on Riemannian manifolds. The study aims to advance optimization theory in the Riemannian setting by presenting and analyzing a penalty-type method for solving CRO problems. The proposed approach is based on techniques that involve … Read more
This work deals with convergence to points satisfying the weak second-order necessary optimality conditions of a second-order safeguarded augmented Lagrangian method from the literature. To this end, we propose a new second-order sequential optimality condition that is, in a certain way, based on the iterates generated by the algorithm itself. This also allows us to … Read more
Considering a standard nonlinear programming problem, one may view a subset of the equality constraints as an embedded Riemannian manifold. In this paper we investigate the differences between the Euclidean and the Riemannian approach for this problem. It is well known that the linear independence constraint qualification for both approaches are equivalent. However, when considering … Read more
We propose an algorithm for general nonlinear conic programming which does not require the knowledge of the full cone, but rather a simpler, more tractable, approximation of it. We prove that the algorithm satisfies a strong global convergence property in the sense that it generates a strong sequential optimality condition. In particular, a KKT point … Read more
In [E. G. Birgin, R. Castillo and J. M. Martínez, Computational Optimization and Applications 31, pp. 31-55, 2005], a general class of safeguarded augmented Lagrangian methods is introduced which includes a large number of different methods from the literature. Besides a numerical comparison including 65 different methods, primal-dual global convergence to a KKT point is … Read more
A common strategy for solving an unconstrained two-player Nash equilibrium problem with continuous variables is applying Newton’s method to the system obtained by the corresponding first-order necessary optimality conditions. However, when taking into account the game dynamics, it is not clear what is the goal of each player when considering they are taking their current … Read more
In this paper, we extend and investigate the properties of the semi-smooth Newton method when applied to a general projection equation in finite dimensional spaces. We first present results concerning Clarke’s generalized Jacobian of the projection onto a closed and convex cone. We then describe the iterative process for the general cone case and establish … Read more
Sequential optimality conditions have played a major role in proving strong global convergence properties of numerical algorithms for many classes of optimization problems. In particular, the way complementarity is dealt is fundamental to achieve a strong condition. Typically, one uses the inner product structure to measure complementarity, which gives a very general approach to a … Read more