Second-Order Cone Relaxations for Binary Quadratic Polynomial Programs

Several types of relaxations for binary quadratic polynomial programs can be obtained using linear, second-order cone, or semidefinite techniques. In this paper, we propose a general framework to construct conic relaxations for binary quadratic polynomial programs based on polynomial programming. Using our framework, we re-derive previous relaxation schemes and provide new ones. In particular, we … Read more

The positive semidefinite Grothendieck problem with rank constraint

Given a positive integer n and a positive semidefinite matrix A = (A_{ij}) of size m x m, the positive semidefinite Grothendieck problem with rank-n-constraint is (SDP_n) maximize \sum_{i=1}^m \sum_{j=1}^m A_{ij} x_i \cdot x_j, where x_1, …, x_m \in S^{n-1}. In this paper we design a polynomial time approximation algorithm for SDP_n achieving an approximation … Read more

Mixed Integer NonLinear Programs featuring “On/Off ” constraints: convex analysis and applications

We call ”on/off” constraint an algebraic constraint that is activated if and only if a corresponding boolean variable is turned ”on” or equal to 1. Our main subject of interest is to derive tight convex formulations of Mixed Integer NonLinear Programs (MINLPs) featuring ”on/off” constraints. We study the simple set defined by one ”on/off” constraint … Read more

Exact Penalty Functions for Nonlinear Integer Programming Problems

In this work, we study exact continuous reformulations of nonlinear integer programming problems. To this aim, we preliminarily state conditions to guarantee the equivalence between pairs of general nonlinear problems. Then, we prove that optimal solutions of a nonlinear integer programming problem can be obtained by using various exact penalty formulations of the original problem … Read more

A Pivoting Algorithm for Linear Programming with Linear Complementarity Constraints

We present a pivoting algorithm for solving linear programs with linear complementarity constraints. Our method generalizes the simplex method for linear programming to deal with complementarity conditions. We develop an anticycling scheme that can verify Bouligand stationarity. We also give an optimization-based technique to find an initial feasible vertex. Starting with a feasible vertex, our … Read more

On the nonexistence of sum of squares certificates for the BMV conjecture

The algebraic reformulation of the BMV conjecture is equivalent to a family of dimensionfree tracial inequalities involving positive semidefinite matrices. Sufficient conditions for these to hold in the form of algebraic identities involving polynomials in noncommuting variables have been given by Markus Schweighofer and the second author. Later the existence of these certificates has been … Read more

Nonmonotone Filter Method for Nonlinear Optimization

We propose a new nonmonotone filter method to promote global and fast local convergence for sequential quadratic programming algorithms. Our method uses two filters: a global g-filter for global convergence, and a local nonmonotone l-filter that allows us to establish fast local convergence. We show how to switch between the two filters efficiently, and we … Read more

A multi-step interior point warm-start approach for large-scale stochastic linear programming

Interior point methods (IPM) have been recognised as an efficient approach for the solution of large scale stochastic programming problems due to their ability of exploiting the block-angular structure of the augmented system particular to this problem class. Stochastic programming problems, however, have exploitable structure beyond the simple matrix shape: namely the scenarios are typically … Read more

Clique-based facets for the precedence constrained knapsack problem

We consider a knapsack problem with precedence constraints imposed on pairs of items, known as the precedence constrained knapsack problem (PCKP). This problem has applications in manufacturing and mining, and also appears as a subproblem in decomposition techniques for network design and related problems. We present a new approach for determining facets of the PCKP … Read more

Nonconvex Robust Optimization

We propose a novel robust optimization technique, which is applicable to nonconvex and simulation-based problems. Robust optimization finds decisions with the best worst-case performance under uncertainty. If constraints are present, decisions should also be feasible under perturbations. In the real-world, many problems are nonconvex and involve computer-based simulations. In these applications, the relationship between decision … Read more