A Pure L1-norm Principal Component Analysis

The L1 norm has been applied in numerous variations of principal component analysis (PCA). L1-norm PCA is an attractive alternative to traditional L2-based PCA because it can impart robustness in the presence of outliers and is indicated for models where standard Gaussian assumptions about the noise may not apply. Of all the previously-proposed PCA schemes … Read more

On Duality Gap in Binary Quadratic Programming

We present in this paper new results on the duality gap between the binary quadratic optimization problem and its Lagrangian dual or semidefinite programming relaxation. We first derive a necessary and sufficient condition for the zero duality gap and discuss its relationship with the polynomial solvability of the primal problem. We then characterize the zeroness … Read more

On the convergence of a wide range of trust region methods for unconstrained optimization

We consider trust region methods for seeking the unconstrained minimum of an objective function F(x), x being the vector of variables, when the gradient grad F is available. The methods are iterative with a starting point x_1 being given. The new vector of variables x_(k+1) is derived from a quadratic approximation to F that interpolates … Read more