Combinatorial Integral Approximation

We are interested in structures and efficient methods for mixed-integer nonlinear programs (MINLP) that arise from a first discretize, then optimize approach to time-dependent mixed-integer optimal control problems (MIOCPs). In this study we focus on combinatorial constraints, in particular on restrictions on the number of switches on a fixed time grid. We propose a novel approach that is based on a decomposition of the MINLP into a NLP and a MILP. We discuss the relation of the MILP solution to the MINLP solution and formulate bounds for the gap between the two, depending on Lipschitz constants and the control discretization grid size. The MILP solution can also be used for an efficient initialization of the MINLP solution process. The speedup of the solution of the MILP compared to the MINLP solution is considerable already for general purpose MILP solvers. We analyze the structure of the MILP that takes switching constraints into account and propose a tailored Branch and Bound strategy that outperforms Cplex and Gurobi on a numerical case study and hence further improves efficiency of our novel method.

Citation

accepted by MMOR

Article

Download

View PDF