Rounding in Mixed-Integer Model Predictive Control

We derive practical stability results for finite-control set and mixed-integer model predictive control. Thereby, we investigate the evolution of the closed-loop system in the presence of control rounding and draw conclusions about optimality. The paper integrates integral approximation strategies with the inherent robustness properties of conventional model predictive control with stabilizing terminal conditions. We propose … Read more

Optimal Control of Semilinear Graphon Systems

Controlling the dynamics of large-scale networks is essential for a macroscopic reduction of overall consumption and losses in the context of energy supply, finance, logistics, and mobility. We investigate the optimal control of semilinear dynamical systems on asymptotically infinite networks, using the notion of graphons. Graphons represent a limit object of a converging graph sequence … Read more

Integer Control Approximations for Graphon Dynamical Systems

Graphons generalize graphs and define a limit object of a converging graph sequence. The notion of graphons allows for a generic representation of coupled network dynamical systems. We are interested in approximating optimal switching controls for graphon dynamical systems. To this end, we apply a decomposition approach comprised of a relaxation and a reconstruction step. … Read more

Randomized Roundings for a Mixed-Integer Elliptic Control System

We present randomized reconstruction approaches for optimal solutions to mixed-integer elliptic PDE control systems. Approximation properties and relations to sum-up rounding are derived using the cut norm. This enables us to dispose of space-filling curves required for sum-up rounding. Rates of almost sure convergence in the cut norm and the SUR norm in control space … Read more

A homotopy for the reliable estimation of model parameters in chromatography processes

Mathematical modeling, simulation, and optimization can significantly support the development and characterization of chromatography steps in the biopharmaceutical industry. Particularly mechanistic models become preferably used, as these models, once carefully calibrated, can be employed for a reliable optimization. However, model calibration is a difficult task in this context due to high correlations between parameters, highly … Read more

Switching cost aware rounding for relaxations of mixed-integer optimal control problems: the two-dimensional case

This article is concerned with a recently proposed switching cost aware rounding (SCARP) strategy in the combinatorial integral decomposition for mixed-integer optimal control problems (MIOCPs). We consider the case of a control variable that is discrete-valued and distributed on a two-dimensional domain. While the theoretical results from the one-dimensional case directly apply to the multidimensional … Read more

Matching Algorithms and Complexity Results for Constrained Mixed-Integer Optimal Control with Switching Costs

We extend recent work on the performance of the combinatorial integral approximation decomposition approach for Mixed-Integer Optimal Control Problems (MIOCPs) in the presence of combinatorial constraints or switching costs on an equidistant grid. For the time discretized problem, we reformulate the emerging rounding problem in the decomposition approach as a matching problem on a bipartite … Read more

Mixed-Integer Optimal Control for Multimodal Chromatography

Multimodal chromatography is a powerful tool in the downstream processing of biopharmaceuticals. To fully benefit from this technology, an efficient process strategy must be determined beforehand. To facilitate this task, we employ a recent mechanistic model for multimodal chromatography, which takes salt concentration and pH into account, and we present a mathematical framework for the … Read more

Mixed-Integer Optimal Control Problems with switching costs: A shortest path approach

We investigate an extension of Mixed-Integer Optimal Control Problems (MIOCPs) by adding switching costs, which enables the penalization of chattering and extends current modeling capabilities. The decomposition approach, consisting of solving a partial outer convexification to obtain a relaxed solution and using rounding schemes to obtain a discrete-valued control can still be applied, but the … Read more