Accelerated first-order methods for convex optimization with locally Lipschitz continuous gradient

In this paper we develop accelerated first-order methods for convex optimization with locally Lipschitz continuous gradient (LLCG), which is beyond the well-studied class of convex optimization with Lipschitz continuous gradient. In particular, we first consider unconstrained convex optimization with LLCG and propose accelerated proximal gradient (APG) methods for solving it. The proposed APG methods are equipped with a verifiable termination criterion and enjoy an operation complexity of $O(\varepsilon^{-1/2}\log \varepsilon^{-1})$ and $O(\log \varepsilon^{-1})$ for finding an $\varepsilon$-residual solution of an unconstrained convex and strongly convex optimization problem, respectively. We then consider constrained convex optimization with LLCG and propose an first-order proximal augmented Lagrangian method for solving it by applying one of our proposed APG methods to approximately solve a sequence of proximal augmented Lagrangian subproblems. The resulting method is equipped with a verifiable termination criterion and enjoys an operation complexity of $O(\varepsilon^{-1}\log \varepsilon^{-1})$ and $O(\varepsilon^{-1/2}\log \varepsilon^{-1})$ for finding an $\varepsilon$-KKT solution of a constrained convex and strongly convex optimization problem, respectively. All the proposed methods in this paper are parameter-free or almost parameter-free except that the knowledge on convexity parameter is required. To the best of our knowledge, no prior studies were conducted to investigate accelerated first-order methods with complexity guarantees for convex optimization with LLCG. All the complexity results obtained in this paper are entirely new.

Citation

Manuscript, Department of Industrial and Systems Engineering, University of Minnesota, June 2022

Article

Download

View Accelerated first-order methods for convex optimization with locally Lipschitz continuous gradient