Variance-reduced first-order methods for deterministically constrained stochastic nonconvex optimization with strong convergence guarantees

In this paper, we study a class of deterministically constrained stochastic optimization problems. Existing methods typically aim to find an \(\epsilon\)-stochastic stationary point, where the expected violations of both constraints and first-order stationarity are within a prescribed accuracy \(\epsilon\). However, in many practical applications, it is crucial that the constraints be nearly satisfied with certainty, … Read more

A first-order augmented Lagrangian method for constrained minimax optimization

In this paper we study a class of constrained minimax problems. In particular, we propose a first-order augmented Lagrangian method for solving them, whose subproblems turn out to be a much simpler structured minimax problem and are suitably solved by a first-order method recently developed in [26] by the authors. Under some suitable assumptions, an … Read more

First-order penalty methods for bilevel optimization

In this paper we study a class of unconstrained and constrained bilevel optimization problems in which the lower-level part is a convex optimization problem, while the upper-level part is possibly a nonconvex optimization problem. In particular, we propose penalty methods for solving them, whose subproblems turn out to be a structured minimax problem and are … Read more

Primal-dual extrapolation methods for monotone inclusions under local Lipschitz continuity with applications to variational inequality, conic constrained saddle point, and convex conic optimization problems

In this paper we consider a class of structured monotone inclusion (MI) problems that consist of finding a zero in the sum of two monotone operators, in which one is maximal monotone while another is locally Lipschitz continuous. In particular, we first propose a primal-dual extrapolation (PDE) method for solving a structured strongly MI problem … Read more

Accelerated first-order methods for convex optimization with locally Lipschitz continuous gradient

In this paper we develop accelerated first-order methods for convex optimization with locally Lipschitz continuous gradient (LLCG), which is beyond the well-studied class of convex optimization with Lipschitz continuous gradient. In particular, we first consider unconstrained convex optimization with LLCG and propose accelerated proximal gradient (APG) methods for solving it. The proposed APG methods are … Read more