New optimality conditions for the semivectorial bilevel optimization problem

The paper is concerned with the optimistic formulation of a bilevel optimization problem with multiobjective lower-level problem. Considering the scalarization approach for the multiobjective program, we transform our problem into a scalar-objective optimization problem with inequality constraints by means of the well-known optimal value reformulation. Completely detailed rst-order necessary optimality conditions are then derived in … Read more

Optimization problems with value function objectives

The family of optimization problems with value function objectives includes the minmax programming problem and the bilevel optimization problem. In this paper, we derive necessary optimality conditions for this class of problems. The main focus is on the case where the functions involved are nonsmooth and the constraints are the very general operator constraints. Citation … Read more

A SIMPLE APPROACH TO OPTIMALITY CONDITIONS IN MINMAX PROGRAMMING

Considering the minmax programming problem, lower and upper subdi erential optimality conditions, in the sense of Mordukhovich, are derived. The approach here, mainly based on the nonsmooth dual objects of Mordukhovich, is completely di erent from that of most of the previous works where generalizations of the alternative theorem of Farkas have been applied. The results obtained … Read more