Exponential Decay of Sensitivity in Graph-Structured Nonlinear Programs

We study solution sensitivity for nonlinear programs (NLPs) whose structure is induced by a graph $\mathcal{G}=(\mathcal{V},\mathcal{E})$. These graph-structured NLPs arise in many applications such as dynamic optimization, stochastic optimization, optimization with partial differential equations, and network optimization. We show that the sensitivity of the primal-dual solution at node $i\in \mathcal{V}$ against a data perturbation at … Read more

Parametric analysis of conic linear optimization

This paper focuses on the parametric analysis of a conic linear optimization problem with respect to the perturbation of the objective function along many fixed directions. We introduce the concept of the primal and dual conic linear inequality representable sets, which is very helpful for converting the correlation of the parametric conic linear optimization problems … Read more

Envelope Theorems for Multi-Stage Linear Stochastic Optimization

We propose a method to compute derivatives of multi-stage linear stochastic optimization problems with respect to parameters that influence the problem’s data. Our results are based on classical envelope theorems, and can be used in problems directly solved via their deterministic equivalents as well as in stochastic dual dynamic programming for which the derivatives of … Read more

Sensitivity Analysis for Nonlinear Programming in CasADi

We present an extension of the CasADi numerical optimization framework that allows arbitrary order NLP sensitivities to be calculated automatically and efficiently. The approach, which can be used together with any NLP solver available in CasADi, is based on a sparse QR factorization and an implementation of a primal-dual active set method. The whole toolchain … Read more

Estimates of generalized Hessians for optimal value functions in mathematical programming

The \emph{optimal value function} is one of the basic objects in the field of mathematical optimization, as it allows the evaluation of the variations in the \emph{cost/revenue} generated while \emph{minimizing/maximizing} a given function under some constraints. In the context of stability/sensitivity analysis, a large number of publications have been dedicated to the study of continuity … Read more

Robust Sensitivity Analysis for Linear Programming with Ellipsoidal Perturbation

Given an originally robust optimal decision and allowing perturbation parameters of the linear programming problem to run through a maximum uncertainty set controlled by a variable of perturbation radius, we do robust sensitivity analysis for the robust linear programming problem in two scenarios. One is to keep the original decision still robust optimal, the other … Read more

Perturbation Analysis of Singular Semidefinite Program and Its Application to a Control Problem

We consider the sensitivity of semidefinite programs (SDPs) under perturbations. It is well known that the optimal value changes continuously under perturbations on the right hand side in the case where the Slater condition holds in the primal problems. In this manuscript, we observe by investigating a concrete SDP that the optimal value can be … Read more

Efficient Symmetric Hessian Propagation for Direct Optimal Control

Direct optimal control algorithms first discretize the continuous-time optimal control problem and then solve the resulting finite dimensional optimization problem. If Newton type optimization algorithms are used for solving the discretized problem, accurate first as well as second order sensitivity information needs to be computed. This article develops a novel approach for computing Hessian matrices … Read more

Strong duality and sensitivity analysis in semi-infinite linear programming

Finite-dimensional linear programs satisfy strong duality (SD) and have the “dual pricing” (DP) property. The (DP) property ensures that, given a sufficiently small perturbation of the right-hand-side vector, there exists a dual solution that correctly “prices” the perturbation by computing the exact change in the optimal objective function value. These properties may fail in semi-infinite … Read more

Robust Sensitivity Analysis of the Optimal Value of Linear Programming

We propose a framework for sensitivity analysis of linear programs (LPs) in minimiza- tion form, allowing for simultaneous perturbations in the objective coefficients and right-hand sides, where the perturbations are modeled in a compact, convex uncertainty set. This framework unifies and extends multiple approaches for LP sensitivity analysis in the literature and has close ties … Read more