Alternating direction method of multipliers for sparse zero-variance discriminant analysis and principal component analysis
We consider the task of classification in the high-dimensional setting where the number of features of the given data is significantly greater than the number of observations. To accomplish this task, we propose sparse zero-variance discriminant analysis (SZVD) as a method for simultaneouslyperforming linear discriminant analysis and feature selection on high-dimensional data. This method combines … Read more