Alternating direction method of multipliers for sparse zero-variance discriminant analysis and principal component analysis

We consider the task of classification in the high-dimensional setting where the number of features of the given data is significantly greater than the number of observations. To accomplish this task, we propose sparse zero-variance discriminant analysis (SZVD) as a method for simultaneouslyperforming linear discriminant analysis and feature selection on high-dimensional data. This method combines … Read more

Robust convex relaxation for the planted clique and densest k-subgraph problems

We consider the problem of identifying the densest k-node subgraph in a given graph. We write this problem as an instance of rank-constrained cardinality minimization and then relax using the nuclear and l1 norms. Although the original combinatorial problem is NP-hard, we show that the densest k-subgraph can be recovered from the solution of our … Read more

Nuclear norm minimization for the planted clique and biclique problems

We consider the problems of finding a maximum clique in a graph and finding a maximum-edge biclique in a bipartite graph. Both problems are NP-hard. We write both problems as matrix-rank minimization and then relax them using the nuclear norm. This technique, which may be regarded as a generalization of compressive sensing, has recently been … Read more