An analytical lower bound for a class of minimizing quadratic integer optimization problems

Lower bounds on minimization problems are essential for convergence of both branching-based and iterative solution methods for optimization problems. They are also required for evaluating the quality of feasible solutions by providing conservative optimality gaps. We provide an analytical lower bound for a class of quadratic optimization problems with binary decision variables. In contrast to … Read more

Quadratic Optimization Models for Balancing Preferential Access and Fairness: Formulations and Optimality Conditions

Published inĀ INFORMS Journal on Computing. https://doi.org/10.1007/978-3-031-47859-8_26 Typically, within facility location problems, fairness is defined in terms of accessibility of users. However, for facilities perceived as undesirable by communities hosting them, fairness between the usage of facilities becomes especially important. Limited research exists on this notion of fairness. To close this gap, we develop a series … Read more