The high-order block RIP for non-convex block-sparse compressed sensing

This paper concentrates on the recovery of block-sparse signals, which is not only sparse but also nonzero elements are arrayed into some blocks (clusters) rather than being arbitrary distributed all over the vector, from linear measurements. We establish high-order sufficient conditions based on block RIP to ensure the exact recovery of every block $s$-sparse signal … Read more

The perturbation analysis of nonconvex low-rank matrix robust recovery

In this paper, we bring forward a completely perturbed nonconvex Schatten $p$-minimization to address a model of completely perturbed low-rank matrix recovery. The paper that based on the restricted isometry property generalizes the investigation to a complete perturbation model thinking over not only noise but also perturbation, gives the restricted isometry property condition that guarantees … Read more

The perturbation analysis of nonconvex low-rank matrix robust recovery

In this paper, we bring forward a completely perturbed nonconvex Schatten $p$-minimization to address a model of completely perturbed low-rank matrix recovery. The paper that based on the restricted isometry property generalizes the investigation to a complete perturbation model thinking over not only noise but also perturbation, gives the restricted isometry property condition that guarantees … Read more

An analysis of noise folding for low-rank matrix recovery

Previous work regarding low-rank matrix recovery has concentrated on the scenarios in which the matrix is noise-free and the measurements are corrupted by noise. However, in practical application, the matrix itself is usually perturbed by random noise preceding to measurement. This paper concisely investigates this scenario and evidences that, for most measurement schemes utilized in … Read more

Group sparse recovery in impulsive noise via alternating direction method of multipliers

In this paper, we consider the recovery of group sparse signals corrupted by impulsive noise. In some recent literature, researchers have utilized stable data fitting models, like $l_1$-norm, Huber penalty function and Lorentzian-norm, to substitute the $l_2$-norm data fidelity model to obtain more robust performance. In this paper, a stable model is developed, which exploits … Read more