The Null Space Property of the Weighted $\ell_r-\ell_1$ Minimization

The null space property (NSP), which relies merely on the null space of the sensing matrix column space, has drawn numerous interests in sparse signal recovery. This article studies NSP of the weighted $\ell_r-\ell_1$ minimization. Several versions of NSP of the weighted $\ell_r-\ell_1$ minimization including the weighted $\ell_r-\ell_1$ NSP, the weighted $\ell_r-\ell_1$ stable NSP, the … Read more

Stable Recovery of Sparse Signals With Non-convex Weighted $r$-Norm Minus $1$-Norm

Given the measurement matrix $A$ and the observation signal $y$, the central purpose of compressed sensing is to find the most sparse solution of the underdetermined linear system $y=Ax+z$, where $x$ is the $s$-sparse signal to be recovered and $z$ is the noise vector. Zhou and Yu \cite{Zhou and Yu 2019} recently proposed a novel … Read more

Analysis non-sparse recovery for non-convex relaxed $\ell_q$ minimization

This paper studies construction of signals, which are sparse or nearly sparse with respect to a tight frame $D$ from underdetermined linear systems. In the paper, we propose a non-convex relaxed $\ell_q(0 Article Download View Analysis non-sparse recovery for non-convex relaxed $ell_q$ minimization

The high-order block RIP for non-convex block-sparse compressed sensing

This paper concentrates on the recovery of block-sparse signals, which is not only sparse but also nonzero elements are arrayed into some blocks (clusters) rather than being arbitrary distributed all over the vector, from linear measurements. We establish high-order sufficient conditions based on block RIP to ensure the exact recovery of every block $s$-sparse signal … Read more