A Framework for Optimization under Ambiguity

In this paper, single stage stochastic programs with ambiguous distributions for the involved random variables are considered. Though the true distribution is unknown, existence of a reference measure P enables the construction of non-parametric ambiguity sets as Kantorovich balls around P. The resulting robustified problems are infinite optimization problems and can therefore not be solved … Read more

Value-at-Risk optimization using the difference of convex algorithm

Value-at-Risk (VaR) is an integral part of contemporary financial regulations. Therefore, the measurement of VaR and the design of VaR optimal portfolios are highly relevant problems for financial institutions. This paper treats a VaR constrained Markowitz style portfolio selection problem when the distribution of returns of the considered assets are given in the form of … Read more

A difference of convex formulation of value-at-risk constrained optimization

In this article, we present a representation of value-at-risk (VaR) as a difference of convex (D.C.) functions in the case where the distribution of the underlying random variable is discrete and has finitely many atoms. The D.C. representation is used to study a financial risk-return portfolio selection problem with a VaR constraint. A branch-and-bound algorithm … Read more