Sharing the Value-at-Risk under Distributional Ambiguity

This paper considers the problem of risk sharing, where a coalition of homogeneous agents, each bearing a random cost, aggregates their costs and shares the value-at-risk of such a risky position. Due to limited distributional information in practice, the joint distribution of agents’ random costs is difficult to acquire. The coalition, being aware of the … Read more

Risk Aversion to Parameter Uncertainty in Markov Decision Processes with an Application to Slow-Onset Disaster Relief

In classical Markov Decision Processes (MDPs), action costs and transition probabilities are assumed to be known, although an accurate estimation of these parameters is often not possible in practice. This study addresses MDPs under cost and transition probability uncertainty and aims to provide a mathematical framework to obtain policies minimizing the risk of high long-term … Read more

Submodularity in conic quadratic mixed 0-1 optimization

We describe strong convex valid inequalities for conic quadratic mixed 0-1 optimization. These inequalities can be utilized for solving numerous practical nonlinear discrete optimization problems from value-at-risk minimization to queueing system design, from robust interdiction to assortment optimization through appropriate conic quadratic mixed 0-1 relaxations. The inequalities exploit the submodularity of the binary restrictions and … Read more

Chance Constrained Programs with Gaussian Mixture Models

In this paper, we discuss input modeling and solution techniques for several classes of chance constrained programs (CCPs). We propose to use Gaussian mixture models (GMM), a semi-parametric approach, to fit the data available and to model the randomness. We demonstrate the merits of using GMM. We consider several scenarios that arise from practical applications … Read more

Risk-based Loan Pricing: Portfolio Optimization Approach With Marginal Risk Contribution

We consider a lender (bank) who determines the optimal loan price (interest rates) to offer to prospective borrowers under uncertain risk and borrowers’ response. A borrower may or may not accept the loan at the price offered, and in the presence of default risk, both the principal loaned and the interest income become uncertain. We … Read more

Maximizing a class of utility functions over the vertices of a polytope

Given a polytope X, a monotone concave univariate function g, and two vectors c and d, we study the discrete optimization problem of finding a vertex of X that maximizes the utility function c’x + g(d’x). This problem has numerous applications in combinatorial optimization with a probabilistic objective, including estimation of project duration with stochastic … Read more

Asset Allocation under the Basel Accord Risk Measures

Financial institutions are currently required to meet more stringent capital requirements than they were before the recent financial crisis; in particular, the capital requirement for a large bank’s trading book under the Basel 2.5 Accord more than doubles that under the Basel II Accord. The significant increase in capital requirements renders it necessary for banks … Read more

Pricing Conspicuous Consumption Products in Recession Periods with Uncertain Strength

We compare different approaches of optimization under uncertainty in the context of pricing strategies for conspicuous consumption products in recession periods of uncertain duration and strength. We consider robust worst-case ideas and how the concepts of Value at Risk (VaR) and Conditional Value at Risk (CVaR) can be incorporated efficiently. The approaches are generic in … Read more

Worst-Case Value-at-Risk of Non-Linear Portfolios

Portfolio optimization problems involving Value-at-Risk (VaR) are often computationally intractable and require complete information about the return distribution of the portfolio constituents, which is rarely available in practice. These difficulties are compounded when the portfolio contains derivatives. We develop two tractable conservative approximations for the VaR of a derivative portfolio by evaluating the worst-case VaR … Read more

Value-at-Risk optimization using the difference of convex algorithm

Value-at-Risk (VaR) is an integral part of contemporary financial regulations. Therefore, the measurement of VaR and the design of VaR optimal portfolios are highly relevant problems for financial institutions. This paper treats a VaR constrained Markowitz style portfolio selection problem when the distribution of returns of the considered assets are given in the form of … Read more