Parallel stochastic line search methods with feedback for minimizing finite sums

We consider unconstrained minimization of a finite sum of $N$ continuously differentiable, not necessarily convex, cost functions. Several gradient-like (and more generally, line search) methods, where the full gradient (the sum of $N$ component costs’ gradients) at each iteration~$k$ is replaced with an inexpensive approximation based on a sub-sample~$\mathcal N_k$ of the component costs’ gradients, … Read more

Newton-like method with diagonal correction for distributed optimization

We consider distributed optimization problems where networked nodes cooperatively minimize the sum of their locally known convex costs. A popular class of methods to solve these problems are the distributed gradient methods, which are attractive due to their inexpensive iterations, but have a drawback of slow convergence rates. This motivates the incorporation of second-order information … Read more

Distributed Gradient Methods with Variable Number of Working Nodes

We consider distributed optimization where $N$ nodes in a connected network minimize the sum of their local costs subject to a common constraint set. We propose a distributed projected gradient method where each node, at each iteration $k$, performs an update (is active) with probability $p_k$, and stays idle (is inactive) with probability $1-p_k$. Whenever … Read more