Federated Learning on Riemannian Manifolds

Federated learning (FL) has found many important applications in smart-phone-APP based machine learning applications. Although many algorithms have been studied for FL, to the best of our knowledge, algorithms for FL with nonconvex constraints have not been studied. This paper studies FL over Riemannian manifolds, which finds important applications such as federated PCA and federated … Read more

A Hessian inversion-free exact second order method for distributed consensus optimization

We consider a standard distributed consensus optimization problem where a set of agents connected over an undirected network minimize the sum of their individual (local) strongly convex costs. Alternating Direction Method of Multipliers (ADMM) and Proximal Method of Multipliers (PMM) have been proved to be effective frameworks for design of exact distributed second order methods … Read more

A Globally Convergent Distributed Jacobi Scheme for Block-Structured Nonconvex Constrained Optimization Problems

Motivated by the increasing availability of high-performance parallel computing, we design a distributed parallel algorithm for linearly-coupled block-structured nonconvex constrained optimization problems. Our algorithm performs Jacobi-type proximal updates of the augmented Lagrangian function, requiring only local solutions of separable block nonlinear programming (NLP) problems. We provide a cheap and explicitly computable Lyapunov function that allows … Read more

EFIX: Exact Fixed Point Methods for Distributed Optimization

We consider strongly convex distributed consensus optimization over connected networks. EFIX, the proposed method, is derived using quadratic penalty approach. In more detail, we use the standard reformulation – transforming the original problem into a constrained problem in a higher dimensional space – to define a sequence of suitable quadratic penalty subproblems with increasing penalty … Read more

A Two-level ADMM Algorithm for AC OPF with Convergence Guarantees

This paper proposes a two-level distributed algorithmic framework for solving the AC optimal power flow (OPF) problem with convergence guarantees. The presence of highly nonconvex constraints in OPF poses significant challenges to distributed algorithms based on the alternating direction method of multipliers (ADMM). In particular, convergence is not provably guaranteed for nonconvex network optimization problems … Read more

A Distributed Quasi-Newton Algorithm for Primal and Dual Regularized Empirical Risk Minimization

We propose a communication- and computation-efficient distributed optimization algorithm using second-order information for solving empirical risk minimization (ERM) problems with a nonsmooth regularization term. Our algorithm is applicable to both the primal and the dual ERM problem. Current second-order and quasi-Newton methods for this problem either do not work well in the distributed setting or … Read more

Consensus-Based Dantzig-Wolfe Decomposition

Dantzig-Wolfe decomposition (DWD) is a classical algorithm for solving large-scale linear programs whose constraint matrix involves a set of independent blocks coupled with a set of linking rows. The algorithm decomposes such a model into a master problem and a set of independent subproblems that can be solved in a distributed manner. In a typical … Read more

A two-level distributed algorithm for nonconvex constrained optimization

This paper aims to develop distributed algorithms for nonconvex optimization problems with complicated constraints associated with a network. The network can be a physical one, such as an electric power network, where the constraints are nonlinear power flow equations, or an abstract one that represents constraint couplings between decision variables of different agents. Despite the … Read more

Parallelizing Subgradient Methods for the Lagrangian Dual in Stochastic Mixed-Integer Programming

The dual decomposition of stochastic mixed-integer programs can be solved by the projected subgradient algorithm. We show how to make this algorithm more amenable to parallelization in a master-worker model by describing two approaches, which can be combined in a natural way. The first approach partitions the scenarios into batches, and makes separate use of … Read more

POLO: a POLicy-based Optimization library

We present POLO — a C++ library for large-scale parallel optimization research that emphasizes ease-of-use, flexibility and efficiency in algorithm design. It uses multiple inheritance and template programming to decompose algorithms into essential policies and facilitate code reuse. With its clear separation between algorithm and execution policies, it provides researchers with a simple and powerful … Read more