A Primal-Dual Perspective on Adaptive Robust Linear Optimization

Adaptive robust optimization is a modelling paradigm for multistage optimization under uncertainty where one seeks decisions that minimize the worst-case cost with respect to all possible scenarios in a prescribed uncertainty set. However, optimal policies for adaptive robust optimization problems are difficult to compute. Therefore, one often restricts to the class of affine policies which … Read more

Tractable approximation of hard uncertain optimization problems

In many optimization problems uncertain parameters appear in a convex way, which is problematic as common techniques can only handle concave uncertainty. In this paper, we provide a systematic way to construct conservative approximations to such problems. Specifically, we reformulate the original problem as an adjustable robust optimization problem in which the nonlinearity of the … Read more

Dual approach for two-stage robust nonlinear optimization

Adjustable robust minimization problems in which the adjustable variables appear in a convex way are difficult to solve. For example, if we substitute linear decision rules for the adjustable variables, then the model becomes convex in the uncertain parameters, whereas for computational tractability we need concavity in the uncertain parameters. In this paper we reformulate … Read more

Robust optimization for models with uncertain SOC and SDP constraints

In this paper we consider uncertain second-order cone (SOC) and semidefinite programming (SDP) constraints with polyhedral uncertainty, which are in general computationally intractable. We propose to reformulate an uncertain SOC or SDP constraint as a set of adjustable robust linear optimization constraints with an ellipsoidal or semidefinite representable uncertainty set, respectively. The resulting adjustable problem … Read more

The impact of the existence of multiple adjustable robust solutions

In this note we show that multiple solutions exist for the production-inventory example in the seminal paper on adjustable robust optimization in [2]. All these optimal robust solutions have the same worst-case objective value, but the mean objective values differ up to 21.9% and for individual realizations this difference can be up to 59.4%. We … Read more

Duality in Two-stage Adaptive Linear Optimization: Faster Computation and Stronger Bounds

In this paper we derive and exploit duality in general two-stage adaptive linear optimization models. The equivalent dualized formulation we derive is again a two-stage adaptive linear optimization model. Therefore, all existing solution approaches for two-stage adaptive models can be used to solve or approximate the dual formulation. The new dualized model differs from the … Read more

Adjustable robust optimization with decision rules based on inexact revealed data

Adjustable robust optimization (ARO) is a technique to solve dynamic (multistage) optimization problems. In ARO, the decision in each stage is a function of the information accumulated from the previous periods on the values of the uncertain parameters. This information, however, is often inaccurate; there is much evidence in the information management literature that even … Read more