Quadratic Cone Cutting Surfaces for Quadratic Programs with On-Off Constraints

We study the convex hull of a set arising as a relaxation of difficult convex mixed integer quadratic programs (MIQP). We characterize the extreme points of our set and the extreme points of its continuous relaxation. We derive four quadratic cutting surfaces that improve the strength of the continuous relaxation. Each of the cutting surfaces … Read more

Local Cuts and Two-Period Convex Hull Closures for Big-Bucket Lot-Sizing Problems

Despite the significant attention they have drawn, big bucket lot-sizing problems remain notoriously difficult to solve. Previous work of Akartunali and Miller (2012) presented results (computational and theoretical) indicating that what makes these problems difficult are the embedded single-machine, single-level, multi-period submodels. We therefore consider the simplest such submodel, a multi-item, two-period capacitated relaxation that … Read more

Strong Branching Inequalities for Convex Mixed Integer Nonlinear Programs

Strong branching is an effective branching technique that can significantly reduce the size of the branch-and-bound tree for solving Mixed Integer Nonlinear Programming (MINLP) problems. The focus of this paper is to demonstrate how to effectively use discarded information from strong branching to strengthen relaxations of MINLP problems. Valid inequalities such as branching-based linearizations, various … Read more

A Computational Analysis of Lower Bounds for Big Bucket Production Planning Problems

In this paper, we analyze a variety of approaches to obtain lower bounds for multi-level production planning problems with big bucket capacities, i.e., problems in which multiple items compete for the same resources. We give an extensive survey of both known and new methods, and also establish relationships between some of these methods that, to … Read more

A Heuristic Approach for Big Bucket Production Planning Problems

Multi-level production planning problems in which multiple items compete for the same resources frequently occur in practice, yet remain daunting in their difficulty to solve. In this paper we propose a heuristic framework that can generate high quality feasible solutions quickly for various kinds of lot-sizing problems. In addition, unlike many other heuristics, it generates … Read more