Probing-Enhanced Stochastic Programming

We consider a two-stage stochastic decision problem where the decision-maker has the opportunity to obtain information about the distribution of the random variables $\xi$ that appear in the problem through a set of discrete actions that we refer to as probing. Probing components of a random vector $\eta$ that is jointly-distributed with $\xi$ allows the … Read more

An Integer Programming Approach To Subspace Clustering With Missing Data

In the Subspace Clustering with Missing Data (SCMD) problem, we are given a collection of n partially observed d-dimensional vectors. The data points are assumed to be concentrated near a union of low-dimensional subspaces. The goal of SCMD is to cluster the vectors according to their subspace membership and recover the underlying basis, which can … Read more

Relaxations and Cutting Planes for Linear Programs with Complementarity Constraints

We study relaxations for linear programs with complementarity constraints, especially instances whose complementary pairs of variables are not independent. Our formulation is based on identifying vertex covers of the conflict graph of the instance and generalizes the extended reformulation-linearization technique of Nguyen, Richard, and Tawarmalani to instances with general complementarity conditions between variables. We demonstrate … Read more

On the Complexity of Separation From the Knapsack Polytope

We close three open problems in the separation complexity of valid inequalities for the knapsack polytope. Specifically, we establish that the separation problems for extended cover inequalities, (1,k)-configuration inequalities, and weight inequalities are all NP-complete. We also give a number of special cases where the separation problem can be solved in polynomial time. ArticleDownload View … Read more

High-Rank Matrix Completion by Integer Programming

In the High-Rank Matrix Completion (HRMC) problem, we are given a collection of n data points, arranged into columns of a matrix X, and each of the data points is observed only on a subset of its coordinates. The data points are assumed to be concentrated near a union of low-dimensional subspaces. The goal of … Read more

Multi-cover Inequalities for Totally-Ordered Multiple Knapsack Sets

We propose a method to generate cutting-planes from multiple covers of knapsack constraints. The covers may come from different knapsack inequalities if the weights in the inequalities form a totally-ordered set. Thus, we introduce and study the structure of a totally-ordered multiple knapsack set. The valid multi-cover inequalities we derive for its convex hull have … Read more

Stability Analysis of Discrete-Time Linear Complementarity Systems

A Discrete-Time Linear Complementarity System (DLCS) is a dynamical system in discrete time whose state evolution is governed by linear dynamics in states and algebraic variables that solve a Linear Complementarity Problem (LCP). A DLCS is the hybrid dynamical system that is the discrete-time counterpart of the well-known Linear Complementarity System (LCS). We derive sufficient … Read more

Multi-cover Inequalities for Totally-Ordered Multiple Knapsack Sets: Theory and Computation

We propose a method to generate cutting-planes from multiple covers of knapsack constraints. The covers may come from different knapsack inequalities if the weights in the inequalities form a totally-ordered set. Thus we introduce and study the structure of a totally-ordered multiple knapsack set. The valid multi-cover inequalities we derive for its convex hull have … Read more

Orbital Conflict: Cutting Planes for Symmetric Integer Programs

Cutting planes have been an important factor in the impressive progress made by integer programming (IP) solvers in the past two decades. However, cutting planes have had little impact on improving performance for symmetric IPs. Rather, the main breakthroughs for solving symmetric IPs have been achieved by cleverly exploiting symmetry in the enumeration phase of … Read more

Optimization-Based Dispatching Policies for Open-Pit Mining

We propose, implement, and test two approaches for dispatching trucks in an open-pit mining operation. The first approach relies on a nonlinear optimization model that incorporates queueing effects to set target average flow rates between mine locations. The second approach is based on a time-discretized mixed integer programming (MIP) model. The MIP model is difficult … Read more