Similarity-based Decomposition Algorithm for Two-stage Stochastic Scheduling

This paper presents a novel decomposition method for two-stage stochastic mixed-integer optimization problems. The algorithm builds upon the idea of similarity between finite sample sets to measure how similar the first-stage decisions are among the uncertainty realization scenarios. Using such a Similarity Index, the non-anticipative constraints are removed from the problem formulation so that the … Read more

An Efficient Pixel-based Packing Algorithm for Additive Manufacturing Production Planning

Additive Manufacturing (AM), the technology of rapid prototyping directly from 3D digital models, has made a significant impact on both academia and industry. When facing the growing demand of AM services, AM production planning (AMPP) plays a vital role in reducing makespan and costs for AM service companies. This research focuses on the AMPP problem … Read more

Optimising the assignment of swabs and reagents for PCR testing during a viral epidemic

Early large-scale swab testing is a fundamental tool for health authorities to assess the prevalence of a virus and enact appropriate mitigation measures during an epidemic. The COVID-19 pandemic has shown that the availability of chemical reagents required to carry out the tests is often a bottleneck in increasing a country’s testing capacity. Further, demand … Read more

A multi-period production and distribution optimization model for radiopharmaceuticals

This paper addresses the manufacturing and distribution of short-lived radio-pharmaceuticals which are mainly used in diagnostic imaging studies. We develop a mixed integer nonlinear optimization model that is flexible enough to capture the complex underlying nuclear physics of the production process of fludeoxyglucose (FDG), which is widely used in oncology and cardiology, as well as … Read more

Single Item Lot-Sizing with Nondecreasing Capacities

We consider the single item lot-sizing problem with capacities that are non-decreasing over time. When the cost function is i) non-speculative or Wagner-Whitin (for instance, constant unit production costs and non-negative unit holding costs), and ii) the production set-up costs are non-increasing over time, it is known that the minimum cost lot-sizing problem is polynomially … Read more

A Computational Analysis of Lower Bounds for Big Bucket Production Planning Problems

In this paper, we analyze a variety of approaches to obtain lower bounds for multi-level production planning problems with big bucket capacities, i.e., problems in which multiple items compete for the same resources. We give an extensive survey of both known and new methods, and also establish relationships between some of these methods that, to … Read more

A Heuristic Approach for Big Bucket Production Planning Problems

Multi-level production planning problems in which multiple items compete for the same resources frequently occur in practice, yet remain daunting in their difficulty to solve. In this paper we propose a heuristic framework that can generate high quality feasible solutions quickly for various kinds of lot-sizing problems. In addition, unlike many other heuristics, it generates … Read more

Lot sizing with inventory gains

This paper introduces the single item lot sizing problem with inventory gains. This problem is a generalization of the classical single item capacitated lot sizing problem to one in which stock is not conserved. That is, the stock in inventory undergoes a transformation in each period that is independent of the period in which the … Read more

MIP-based heuristics for multi-item capacitated lot-sizing problem with setup times and shortage costs

We address a multi-item capacitated lot-sizing problem with setup times that arises in real-world production planning contexts. Demand cannot be backlogged, but can be totally or partially lost. Safety stock is an objective to reach rather than an industrial constraint to respect. The problem is NP-hard. A mixed integer mathematical formulation is presented. We propose … Read more

The multi-item capacitated lot-sizing problem with setup times and shortage costs

We address a multi-item capacitated lot-sizing problem with setup times and shortage costs that arises in real-world production planning problems. Demand cannot be backlogged, but can be totally or partially lost. The problem is NP-hard. A mixed integer mathematical formulation is presented. Our approach in this paper is to propose some classes of valid inequalities … Read more