Using generalized simplex methods to approximate derivatives

This paper presents two methods for approximating a proper subset of the entries of a Hessian using only function evaluations. These approximations are obtained using the techniques called generalized simplex Hessian and generalized centered simplex Hessian. We show how to choose the matrices of directions involved in the computation of these two techniques depending on … Read more

The cosine measure relative to a subspace

The cosine measure was introduced in 2003 to quantify the richness of a finite positive spanning sets of directions in the context of derivative-free directional methods. A positive spanning set is a set of vectors whose nonnegative linear combinations span the whole space. The present work extends the definition of cosine measure. In particular, the … Read more

Using orthogonally structured positive bases for constructing positive k-spanning sets with cosine measure guarantees

\(\) Positive spanning sets span a given vector space by nonnegative linear combinations of their elements. These have attracted significant attention in recent years, owing to their extensive use in derivative-free optimization. In this setting, the quality of a positive spanning set is assessed through its cosine measure, a geometric quantity that expresses how well … Read more