A Fast and Robust Algorithm for Solving Biobjective Mixed Integer Programs

We present a fast and robust algorithm for solving biobjective mixed integer programs. The algorithm extends and merges ideas from two existing methods: the Boxed Line Method and the epsilon-Tabu Method. We demonstrate its efficacy in an extensive computational study. We also demonstrate that it is capable of producing a high-quality approximation of the nondominated … Read more

A Criterion Space Search Algorithm for Biobjective Mixed Integer Programming: the Boxed Line Method

Despite recent interest in multiobjective integer programming, few algorithms exist for solving biobjective mixed integer programs. We present such an algorithm: the Boxed Line Method. For one of its variants, we prove that the number of single-objective integer programs solved is bounded by a linear function of the number of nondominated line segments in the … Read more

Comparative Analysis of Capacitated Arc Routing Formulations for Branch-Cut-and-Price Algorithms

The current best exact algorithms for the Capacitated Arc Routing Problem are based on the combination of cut and column generation. This work presents a deep theoretical investigation of the formulations behind those algorithms, classifying them and pointing similarities and differences, advantages and disadvantages. In particular, we discuss which families of cuts and branching strategies … Read more

New Benchmark Instances for the Capacitated Vehicle Routing Problem

The recent research on the CVRP is being slowed down by the lack of a good set of benchmark instances. The existing sets suff er from at least one of the following drawbacks: (i) became too easy for current algorithms; (ii) are too arti cial; (iii) are too homogeneous, not covering the wide range of characteristics found … Read more