Strong Partitioning and a Machine Learning Approximation for Accelerating the Global Optimization of Nonconvex QCQPs

We learn optimal instance-specific heuristics for the global minimization of nonconvex quadratically-constrained quadratic programs (QCQPs). Specifically, we consider partitioning-based convex mixed-integer programming relaxations for nonconvex QCQPs and propose the novel problem of strong partitioning to optimally partition variable domains without sacrificing global optimality. Since solving this max-min strong partitioning problem exactly can be very challenging, … Read more

Tightening Quadratic Convex Relaxations for the AC Optimal Transmission Switching Problem

The Alternating Current Optimal Transmission Switching (ACOTS) problem incorporates line switching decisions into the fundamental AC optimal power flow (ACOPF) problem. The advantages of the ACOTS problem are well-known in terms of reducing the operational cost and improving system reliability. ACOTS optimization models contain discrete variables and nonlinear, non-convex constraints, which make it difficult to … Read more

Optimal Power Flow in Distribution Networks under N-1 Disruptions: A Multi-stage Stochastic Programming Approach

Contingency research to find optimal operations and post-contingency recovery plans in distribution networks has gained a major attention in recent years. To this end, we consider a multi-period optimal power flow (OPF) problem in distribution networks, subject to the N-1 contingency where a line or distributed energy resource fails. The contingency can be modeled as … Read more