Certifying Global Optimality of AC-OPF Solutions via sparse polynomial optimization

We report the experimental results on certifying 1% global optimality of solutions of AC-OPF instances from PGLiB via the CS-TSSOS hierarchy — a moment-SOS based hierarchy that exploits both correlative and term sparsity, which can provide tighter SDP relaxations than Shor’s relaxation. Our numerical experiments demonstrate that the CS-TSSOS hierarchy scales well with the problem … Read more

Condensed interior-point methods: porting reduced-space approaches on GPU hardware

The interior-point method (IPM) has become the workhorse method for nonlinear programming. The performance of IPM is directly related to the linear solver employed to factorize the Karush–Kuhn–Tucker (KKT) system at each iteration of the algorithm. When solving large-scale nonlinear problems, state-of-the art IPM solvers rely on efficient sparse linear solvers to solve the KKT … Read more

An MISOCP-Based Decomposition Approach for the Unit Commitment Problem with AC Power Flows

Unit Commitment (UC) and Optimal Power Flow (OPF) are two fundamental problems in short-term electric power systems planning that are traditionally solved sequentially. The state-of-the-art mostly uses a direct current flow approximation of the power flow equations in the UC-level and the generator commitments obtained are sent as input to the OPF-level. However, such an … Read more

Stochastic Dual Dynamic Programming for Optimal Power Flow Problems under Uncertainty

We propose the first computationally tractable framework to solve multi-stage stochastic optimal power flow (OPF) problems in alternating current (AC) power systems. To this end, we use recent results on dual convex semi-definite programming (SDP) relaxations of OPF problems in order to adapt the stochastic dual dynamic programming (SDDP) algorithm for problems with a Markovian … Read more

A Two-level ADMM Algorithm for AC OPF with Convergence Guarantees

This paper proposes a two-level distributed algorithmic framework for solving the AC optimal power flow (OPF) problem with convergence guarantees. The presence of highly nonconvex constraints in OPF poses significant challenges to distributed algorithms based on the alternating direction method of multipliers (ADMM). In particular, convergence is not provably guaranteed for nonconvex network optimization problems … Read more

Optimal Power Flow in Distribution Networks under N-1 Disruptions: A Multi-stage Stochastic Programming Approach

Contingency research to find optimal operations and post-contingency recovery plans in distribution networks has gained a major attention in recent years. To this end, we consider a multi-period optimal power flow (OPF) problem in distribution networks, subject to the N-1 contingency where a line or distributed energy resource fails. The contingency can be modeled as … Read more

Stochastic DC Optimal Power Flow With Reserve Saturation

We propose an optimization framework for stochastic optimal power flow with uncertain loads and renewable generator capacity. Our model follows previous work in assuming that generator outputs respond to load imbalances according to an affine control policy, but introduces a model of saturation of generator reserves by assuming that when a generator’s target level hits … Read more

A Bilevel Approach for Identifying the Worst Contingencies for Nonconvex Alternating Current Power Systems

We address the bilevel optimization problem of identifying the most critical attacks to an alternating current (AC) power flow network. The upper-level binary maximization problem consists in choosing an attack that is treated as a parameter in the lower-level defender minimization problem. Instances of the lower-level global minimization problem by themselves are NP-hard due to … Read more

CONICOPF: Conic relaxations for AC optimal power flow computations

Computational speed and global optimality are key needs for practical algorithms for the optimal power flow problem. Two convex relaxations offer a favorable trade-off between the standard second-order cone and the standard semidefinite relaxations for large-scale meshed networks in terms of optimality gap and computation time: the tight-and-cheap relaxation (TCR) and the quadratic convex relaxation … Read more

Tight-and-cheap conic relaxation for the optimal reactive power dispatch problem

The optimal reactive power dispatch (ORPD) problem is an alternating current optimal power flow (ACOPF) problem where discrete control devices for regulating the reactive power, such as shunt elements and tap changers, are considered. The ORPD problem is modelled as a mixed-integer nonlinear optimization problem and its complexity is increased compared to the ACOPF problem, … Read more