The convergence rate of the Sandwiching algorithm for convex bounded multiobjective optimization

Sandwiching algorithms, also known as Benson-type algorithms, approximate the nondominated set of convex bounded multiobjective optimization problems by constructing and iteratively improving polyhedral inner and outer approximations. Using a set-valued metric, an estimate of the approximation quality is determined as the distance between the inner and outer approximation. The convergence of the algorithm is evaluated … Read more

Efficient Computation of the Approximation Quality in Sandwiching Algorithms

Computing the approximation quality is a crucial step in every iteration of Sandwiching algorithms (also called Benson-type algorithms) used for the approximation of convex Pareto fronts, sets or functions. Two quality indicators often used in these algorithms are polyhedral gauge and epsilon indicator. In this article, we develop an algorithm to compute the polyhedral gauge … Read more

An approximation algorithm for multi-objective mixed-integer convex optimization

In this article we introduce an algorithm that approximates Pareto fronts of multiobjective mixed-integer convex optimization problems. The algorithm constructs an inner and outer approximation of the front exploiting the convexity of the patches and is applicable to problems with an arbitrary number of criteria. In the algorithm, the problem is decomposed into patches, which … Read more