A Reduced Jacobian Scheme with Full Convergence for Multicriteria Optimization

In this paper, we propose a variant of the reduced Jacobian method (RJM) introduced by El Maghri and Elboulqe in [JOTA, 179 (2018) 917–943] for multicriteria optimization under linear constraints. Motivation is that, contrarily to RJM which has only global convergence to Pareto KKT-stationary points in the classical sense of accumulation points, this new variant … Read more

Targeted Multiobjective Dijkstra Algorithm

In this paper, we introduce the Targeted Multiobjective Dijkstra Algorithm (T-MDA), a label setting algorithm for the One-to-One Multiobjective Shortest Path (MOSP) Problem. The T-MDA is based on the recently published Multiobjective Dijkstra Algorithm (MDA) and equips it with A*-like techniques. The resulting speedup is comparable to the speedup that the original A* algorithm achieves … Read more

Stopping rules and backward error analysis for bound-constrained optimization

Termination criteria for the iterative solution of bound-constrained optimization problems are examined in the light of backward error analysis. It is shown that the problem of determining a suitable perturbation on the problem’s data corresponding to the definition of the backward error is analytically solvable under mild assumptions. Moreover, a link between existing termination criteria … Read more

Newton’s Method for Multiobjective Optimization

We propose an extension of Newton’s Method for unconstrained multiobjective optimization (multicriteria optimization). The method does not scalarize the original vector optimization problem, i.e. we do not make use of any of the classical techniques that transform a multiobjective problem into a family of standard optimization problems. Neither ordering information nor weighting factors for the … Read more

An Adaptive Primal-Dual Warm-Start Technique for Quadratic Multiobjective Optimization

We present a new primal-dual algorithm for convex quadratic multicriteria optimization. The algorithm is able to adaptively refine the approximation to the set of efficient points by way of a warm-start interior-point scalarization approach. Results of this algorithm when applied on a three-criteria real-world power plant optimization problem are reported, thereby illustrating the feasibility of … Read more

An Improved Algorithm for Biobjective Integer Programs

A parametric algorithm for identifying the Pareto set of a biobjective integer program is proposed. The algorithm is based on the weighted Chebyshev (Tchebycheff) scalarization, and its running time is asymptotically optimal. A number of extensions are described, including: a technique for handling weakly dominated outcomes, a Pareto set approximation scheme, and an interactive version … Read more

A Multicriteria Approach to Bilevel Optimization

In this paper we study the relationship between bilevel optimization and bicriteria optimization. Given a bilevel optimization problem, we introduce an order relation such that the optimal solutions of the bilevel problem are the nondominated points with respect to the order relation. In the case where the lower level problem of the bilevel optimization problem … Read more

Constructing Approximations to the Efficient Set of Convex Quadratic Multiobjective Problems

In multicriteria optimization, several objective functions have to be minimized simultaneously. For this kind of problem, no single solution can adequately represent the whole set of optimal points. We propose a new efficient method for approximating the solution set of a convex quadratic multiobjective programming problem. The method is based on a warm-start interior point … Read more