The structure of the infinite models in integer programming

The infinite models in integer programming can be described as the convex hull of some points or as the intersection of half-spaces derived from valid functions. In this paper we study the relationships between these two descriptions. Our results have implications for finite dimensional corner polyhedra. One consequence is that nonnegative continuous functions suffice to … Read more

How to choose what you lift

We explore the lifting question in the context of cut-generating functions. Most of the prior literature on lifting for cut-generating functions focuses on which cut-generating functions have the unique lifting property. Here we develop a general theory for under- standing how to do lifting for cut-generating functions which do not have the unique lifting property. … Read more

Operations that preserve the covering property of the lifting region

We contribute to the theory for minimal liftings of cut-generating functions. In particular, we give three operations that preserve the so-called covering property of certain structured cut-generating functions. This has the consequence of vastly expanding the set of undominated cut generating functions which can be used computationally, compared to known examples from the literature. The … Read more